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Phenomena of g-u symmetry-breakdown in HD

A. DE LANGE*, E. REINHOLD{ and W. UBACHS{

Laser Centre, Department of Physics and Astronomy, Vrije Universiteit,
Amsterdam, The Netherlands

Phenomena associated with the breakdown of inversion symmetry in the HD
molecule are reviewed and discussed. A distinction is made between three kinds of
physical e� ects observed in HD spectra. The existence of a small electric dipole
moment in the ground state gives rise to vibrational and pure rotational transitions
following selection rules of electric dipole transitions. Coupling between electronic
states of g and u symmetry occurs, which is associated with the appearance of
forbidden lines in the electronic spectrum. This e� ect occurs predominantly at near
coincidences between levels of opposite inversion symmetry and a recently
observed example of strongly interacting states ( ·HH 1§‡

g and ·BB 1§‡
u ) is highlighted.

Electronic coupling between states of g and u symmetry always takes place near
dissociation threshold; as a result of the mass di� erence and the electronic isotope
shift the behaviour at long range cannot be described in an adiabatic picture. A
procedure is developed to construct long-range potentials near the n ˆ 2 dissocia-
tion limit in which the breakdown of g±u symmetry is incorporated.
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1. Introduction
Symmetry is a basic concept in physics. Symmetry properties of physical laws

impose restraints on the structure of matter and therefore, when characterizing a
system, it is important to identify its symmetry properties. A diatomic molecule
possesses symmetries of strict validity, for instance the permutation of identical
particles, together with some symmetries of only approximate validity. One such
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approximate symmetry is the inversion symmetry of the electronic wavefunction in
homonuclear diatomic molecules. In these molecules, this symmetry is valid to a very
high degree and electronic states are therefore often labelled with gerade or ungerade;
these are the two eigenvalues of the inversion symmetry operator. Although the
symmetry will be broken at a certain point in homonuclear molecules, it will be
broken in heteronuclear isotopomers at a lower level. In HD, for instance, the
breaking of this symmetry is observed in several ways.

A celebrated example of breaking of inversion symmetry in HD is the occurrence
of an electric dipole moment, which had already been predicted by Wick [1] 1935.
The centre of positive charge oscillates along the molecular axis during vibration,
because the excursions of the proton are larger than those of the deuteron; since the
electrons do not follow this motion exactly, a permanent dipole moment results.
Herzberg was the ®rst to observe the features of an infrared, i.e. vibrational,
spectrum in HD, following the selection rules of an electric dipole transition [2],
whereas Bunker investigated the transitions and in particular the line strengths,
theoretically [3]. Later, the pure rotational spectrum in the far infrared domain, also
associated with the ground-state dipole moment, was observed as well [4]. A
collective shift of vibrational levels in the X 1§‡

g ground state of HD with respect
to the expected values based on the levels in H2 and D2 is observed. This e� ect is on
the order of 0.5 cm¡1, which is attributed to non-adiabatic interactions with higher-
lying states of 1§‡

u symmetry [5], the interaction that is responsible for the electric
dipole moment of the ground state.

The breakdown of the g±u symmetry is also observed via otherwise dipole
forbidden g $ g electronic transitions. This is for instance the case with the
EF 1§‡

g ±X 1§‡
g system, ®rst observed by Dabrowski and Herzberg [5] and later in

higher resolution by Hinnen et al. [6]. The symmetry-breaking e� ect is strongest for
those rovibrational levels that are close to levels of the B and C states, with 1§‡

u and
1¦u symmetry, respectively. Similarly, forbidden electronic transitions were observed
in the GK 1§‡

g ±X 1§‡
g and I 1¦g±X 1§‡

g systems [5]; in these cases rovibrational levels
in the inner wells of the excited double-well structures could be probed. A similar,
but stronger, feature of g±u symmetry breaking is that of the interacting ·HH 1§‡

g and
·BB 1§‡

u states. The potential curves corresponding to these states, nearly coincide over
a large range of internuclear separations and the progression of the vibrational levels
is such that the interaction reaches a maximum near v ˆ 14, to the extent of almost
complete mixture of a 1§‡

g and a 1§‡
u vibrational level [7]. The features of such

accidental behaviour are reviewed in section 2.
The former of the two aforementioned cases is an example of a weak interaction

as the perturbing states are localized in a di� erent energy region to the electronic
ground state. In the latter cases, the interactions are much stronger owing to
coincidences. Near dissociation limits the density of bound states becomes high,
because several potentials converge to the same limit. The spacing between levels
within one potential decreases as the limit is approached and coincidences between
rovibrational levels of di� erent inversion symmetry will always occur. The inter-
actions result in the splitting of the dissociation limit which is associated with the
existence of an atomic isotope shift between H and D. A recent investigation of the
I 0 1¦g state [8], just below the n ˆ 2 limit, revealed several aspects of the g±u
symmetry breakdown close to a dissociation limit. A semiempirical treatment of
this energetic region in HD is further elaborated in section 3. The potential curves
belonging to the states discussed in this paper are depicted in ®gure 1.
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To investigate to what level inversion symmetry holds in general, some aspects of
the theory of molecular structure are discussed in the next subsection. The Born±
Oppenheimer (BO) approximation [9], one of the so-called adiabatic approxima-
tions, decoupling the electronic wavefunction from the nuclear wavefunction, is
taken as the starting point of the analysis.

1.1. Adiabatic approximations
The non-relativisti c SchroÈ dinger equation for diatomic molecules, after separat-

ing the centre-of-mass motion, can be written as (see for example [10, 11])

…H0 ‡ H1 ‡ H2†C…R; r† ˆ EC…R; r†; …1†

where

H0 ˆ ¡ ·h2

2me

X

i

Ñ 2
ri

‡ V…R; r†;

H1 ˆ ¡ ·h2

2·
Ñ 2

R; and

H2 ˆ ¡ ·h2

2·a
Ñ R ¢

X

i

Ñ ri
¡ ·h2

8·

X

i; j

Ñ ri
¢ Ñ rj

; …2†

with me the electron mass, · ˆ M1M2=…M1 ‡ M2† the reduced mass of nuclei 1 and 2
and ·a ˆ M1M2=…M1 ¡ M2†. R refers to the nuclear coordinates in a ®xed reference
system, r to coordinates of all electrons, whereas ri refers to the coordinates of the ith
electron only. R ˆ jRj is the internuclear distance. H0 represents the electronic
Hamiltonian; the ®rst term corresponds to the kinetic energy of the electrons and the
second to the potential energy representing the Coulomb attraction and repulsion
between all charged particles. H1 is the kinetic energy term of the nuclei and H2
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Figure 1. Potential curves for the B 1§‡
u , B 0 1§‡

u , C 1¦u , EF 1§‡
g , GK 1§‡

g , II 0 1¦g, H ·HH 1§‡
g

and B 00 ·BB 1§‡
u states in hydrogen. The thick curves refer to ungerade states and the

thin curves to gerade states. The § states are depicted with full curves; ¦ states with
broken curves. The potential curve for the ground state of HD‡ is depicted as a dot-
dashed curve.
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represents the coupling of the electrons with the nuclei and the electron±electron
coupling. Without imposing restraints on generality, one can express the wavefunc-
tion C…R; r† as the following expansion:

C…R; r† ˆ
X

n

Àn…R†¿n…R; r†; …3†

where ¿n…R; ri† is one of the complete set of orthonormal eigenstates of H0 and n is
the label for a particular eigenstate, thus

H0¿n…R; r† ˆ En…R†¿n…R; r†: …4†

In this equation the internuclear distance R is a parameter, rather than a variable
and En is therefore a function of R.

Inserting the expansion of equation (3) in the SchroÈ dinger equation, equation (1),
subsequently multiplying by the complex conjugate of ¿m…R; r† and integrating over
all the electronic coordinates results in [11]

¡ ·h2

2·
Ñ 2

R ‡ Em…R† ‡ Cmm…R†
µ ¶

Àm…R† ˆ EÀm…R† ¡
X

n 6ˆm

CmnÀn…R†; …5†

where

Cmn ˆ
…

¿¤
m…R; r†H2¿n…R; r† dr: …6†

To solve this in®nite number of coupled equations self-consistently is virtually
impossible and appropriate approximations are required.

In the BO approximation H2 in equation (1) is ignored and hence all Cmn in
equation (5) are set to zero. The equation reduces to

¡ ·h2

2·
Ñ 2

R ‡ Em…R†
µ ¶

Àm…R† ˆ EBOÀm…R†; …7†

with EBO the energies within the BO approximation. The potential curves Em…R† are
independent of the nuclear masses and are thus equal for all isotopomers within this
approximation. The above equation provides a set of rovibrational Àm…R† eigenfunc-
tions for each potential curve Em…R† and the total molecular wavefunctions are
simply of the form

C…R; r† ˆ ¿…R; r†À…R†: …8†

Approximations resulting in wavefunctions that can be written in such product
forms are called adiabatic approximations. It can be shown that these approxima-
tions are valid only if the electronic wavefunction can be assumed to adapt
instantaneously to the motion of the nuclei.

The BO approximation is an example of a rather crude, although often accurate,
adiabatic approximation because a part of the Hamiltonian is completely neglected.
One might wonder whether there is an adiabatic approximation which takes the
neglected terms, at least partly, into account. It can be shown that only the second
term in H2 contributes to Cmm in equation (5) [11] and therefore Cmm is a function of
R only. By ignoring the terms with Cmn …m 6ˆ n† in equation (5), a SchroÈ dinger
equation similar to the one in the BO approximation is obtained, namely
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¡ ·h2

2·
Ñ 2

R ‡ E 0
m…R†

µ ¶
Àm…R† ˆ EadÀm…R†; …9†

where

E 0
m…R† ˆ Em…R† ‡ Cmm…R†: …10†

Also in this approximation the wavefunction belonging to the energy Ead is simply a
product of À…R† and ¿…R; r† and is therefore another example of an adiabatic
approximation. Cmm can be viewed as corrections to the BO potentials and are
consequently called the adiabatic corrections. The nuclear masses are contained in
Cmm…R† and this results in a di� erent potential curve for every isotopomer. Note that
when the nuclear masses are set to in®nity, Cmm…R† ˆ 0 and the BO curves are
obtained again. Non-adiabatic corrections involve the matrix elements Cmn …m 6ˆ n†
and result in wavefunctions which cannot be written as simple product functions.
Therefore, E 0

m…R† are the `best possible’ potential energy curves.

1.2. Inversion symmetry
In diatomic molecules a symmetry operator i can be de®ned, which inverts the

electronic part of the wavefunction through the geometrical centre of the molecule in
the body-®xed frame. In homopolar diatomics, these being molecules consisting of
two atoms with the same nuclear charge, the Coulomb ®eld of the nuclei is invariant
under this operation and hence the states can be divided in two classes: the
eigenvalues +1 and ¡1 are represented by the labels g for gerade and u for
ungerade, rather than `+’ and `¡’ to avoid confusion with the eigenvalues of the
parity operator acting in the space-®xed frame.

The ®rst term of H2 in equation (2), i.e.

Hgu ˆ ¡ ·h2

2·a
Ñ R ¢

X

i

Ñ ri
; …11†

is the only term in the non-relativistic Hamiltonian not commuting with the operator
i. The term represents the coupling between the electronic motion and the asym-
metric rovibrational motion of the nuclei around the centre of mass, breaking the
g±u symmetry.

As mentioned above, within the BO approximation, this term is neglected and
g=u is a good quantum number. Also in the adiabatic approximation described by
equation (9), g=u is a good quantum number as this term does not contribute to Cmm

[11]. This extends to the case of isotopomers with nuclei of di� erent mass like HD. In
the case of homonuclear isotopomers ·a ˆ 0 and Hgu obviously vanishes completely
and consequently the entire non-relativisti c Hamiltonian commutes with i and g=u is
a good quantum number even beyond adiabatic approximations . In heteronuclear
isotopomers, however, it may reach considerable values and consequently may give
rise to breakdown of the inversion symmetry. The breakdown of g±u symmetry in
HD may be observed in di� erent ways, but the origin lies predominantly in this
coupling.

It is noted here that in the relativistic Hamiltonian another term does not obey
symmetry under the i operation, namely the hyper®ne interaction, involving the
nuclear spin. This interaction breaks down the g±u symmetry in any isotopomer but
is rather weak; <0.1 cm¡1 at the n ˆ 2 dissociation limit in H2.
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2. Forbidden electronic transitions
In the energy region in between 100 000 cm¡1 above the ground state and the

n ˆ 2 dissociation limit the rovibrational levels in the EF 1§‡
g state of g symmetry

and the B 1§‡
u and C 1¦u states of u symmetry have several near coincidences, in HD

as well as in homonuclear species. The transition EF 1§‡
g ±X 1§‡

g is dipole forbidden
owing to the dipole selection rule g 6$ g. In HD, however, g is no longer a good
quantum number and this selection rule becomes less strict. As a result of inter-
actions the EF±X transitions in HD gain strength from interactions with the u
symmetry states. Dabrowski and Herzberg [5] have observed various dipole-
forbidden transitions originating in EF …v ˆ 2±23† in absorption. They also have
observed some other g $ g transitions: G 1§‡

g ±X 1§‡
g and I 1¦g±X 1§‡

g . Of the G
state v ˆ 0±3 was observed whereas v ˆ 0 and v ˆ 3 of the I state were identi®ed.
Later Hinnen et al. [6] performed a high-precision 1+1 resonance enhanced multi-
photon ionization experiment and observed EF 1§‡

g …v ˆ 5±8; 10±14†. It was shown
that the strongest transitions observed involved levels lying in energy in the vicinity
of B and C states and therefore undergo the strongest interactions.

As a result of the interactions shifts in the level energies also occur. Hinnen et al.
[6] analysed these shifts in terms of a semiempirical model of homogeneous and
heterogeneous interactions between the three states involved. To treat the perturba-
tions an energy matrix was diagonalized:

EB
v …J† WB;C

~JJ WB;EF

WB;C
~JJ EC

v …J† WC;EF
~JJ

WB;EF WC;EF
~JJ EEF

v …J†

2

664

3

775; …12†

where ~JJ ˆ
������������������
J…J ‡ 1†

p
and the deperturbed eigenenergies are on the diagonal. The

non-adiabatic interactions between the B 1§‡
u and C 1¦u states, represented by a

heterogeneous coupling (J-dependent matrix element), also occur in H2 and D2. The
o� -diagonal interactions WC;EF

������������������
J…J ‡ 1†

p
and WB;EF, representing g±u symmetry

breaking, only play a role in HD. In the case of the strong interaction between
B …v ˆ 14† and EF …v ˆ 8†, with the closest coincidence appearing at J ˆ 3, the
interaction matrix element was found to be as large as 6.6 cm¡1. A level diagram
displaying the local g±u symmetry-breaking interactions between EF states of g
symmetry and B and C states of u symmetry is shown in ®gure 2.

In the example of the ·HH 1§‡
g state, interacting with the ·BB 1§‡

u state, the g±u
interactions are less accidental, because of the similar shapes of the two potential
energy curves involved. As can be seen in ®gure 3 the vibrational spacing is slightly
smaller in the ·BB 1§‡

u state then in the ·HH 1§‡
g outer-well state. Together with the fact

that the lowest vibrational level of the ·BB state lies lower in energy than v ˆ 0 of ·HH,
the interaction becomes stronger with increasing energy up to v ˆ 14 where the two
vibrational progressions cross each other. The avoided crossing behaviour in terms
of frequency shifts and derived g=u mixing fractions are displayed in ®gure 4.

Experimentally both states were excited, in a multi-photon laser set-up, via the
B 1§‡

u intermediate state, although excitation of the ·BB±B transition is dipole
forbidden, because of the u 6$ u selection rule; transition strength is gained from
the interaction of the ·BB state with states of g symmetry, in particular ·HH and from B
levels with an (accidentally) strong admixture of EF. In a semiempirical analysis,
based on a comparison with the level energies for H2 and D2 in the ·HH state, the shifts
were included in a perturbation analysis [7]; here only interactions with ¢v ˆ 0 were
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taken into account and the matrix element h ·HH…v†jHguj·BB…v†i was found to be
independent of the vibrational quantum number. Even in this restricted semiempi-
rical model good quantitative agreement could be produced. The increase of
interaction strength toward v ˆ 14 is not produced by a variation of the matrix
element but by the fact that the levels ·BB…v† and ·HH…v† approach each other. As shown
in ®gure 4, for vibrational levels v 6ˆ 14 there is a gradually increasing symmetry-
breaking e� ect toward the crossing; at v ˆ 14 there is nearly a 50%±50% admixture
of g and u character in the ·HH 1§‡

…g† and ·BB 1§‡
…u† wavefunctions, where g and u have

entirely lost meaning.
Above the potential barrier of ·HH, the rovibronic wavefunctions extend to short

internuclear distances and levels strongly interact with the short-lived Rydberg
states. Therefore, the levels of the ·HH state become broadened. In HD the levels of
the ·BB state are broadened as well, even though the levels are still beneath the barrier

Phenomena of g±u symmetry breakdown in HD 263

Figure 2. Energy level diagram (taken from [6]) displaying local perturbations between
states of u and g symmetry in HD. Rotational quantum states in B 1§‡

u are indicated
by °, states of C 1¦u by ¯ and states of EF 1§‡

g by 4. Local perturbations are indi-
cated by rectangular or elliptical shapes: rectangular shapes refer to heterogeneous
interactions between B and C levels; elliptical features involve g±u symmetry-breaking
couplings between EF states and B and C states.

Figure 3. BO potential curves of the H ·HH 1§‡
…g† and B 00 ·BB 1§‡

…u† states taken from [12] and [13]
respectively. Vibrational spacings in the ·BB outer well are larger than those in ·HH,
giving rise to a crossing near v ˆ 14. In the inset it is shown how the levels are shifted
around v ˆ 14.
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of the ·BB potential. In the case of H2 these levels are shielded by this barrier from the
predissociating and autoionizing Rydberg states. In HD, however, the levels couple
with levels in the ·HH state and interact via this admixture with the Rydberg levels and
become shorter lived than the same levels in H2. This phenomenon is demonstrated
in the recording of v ˆ 17 levels for both ·HH and ·BB in ®gure 5. The ·HH …v ˆ 17† level is
well above the barrier of the g symmetry potential and couples therefore to the
continuum states at short internuclear separation for which strong broadening is
predicted and it can be seen that the linewidths are of the order of wavenumbers.
Also the ·BB …v ˆ 17† level is slightly broadened, not to the extent of the ·HH
counterpart, but broader than comparable levels in H2. Because of the interaction
with the ·HH …v ˆ 17† state, the rotational levels become short-lived and hence the
resonance becomes broad. Another peculiar e� ect can be seen in ®gure 5; the line
corresponding to ·HH …v ˆ 17; J ˆ 3† is much narrower than the one belonging to
J ˆ 1. This may be explained in terms of coupling with the short-lived states at small
internuclear distances. Probably, the J ˆ 3 state undergoes a weaker interaction with
the Rydberg manifold than the J ˆ 1 state. This is supported by the fact that the
lines corresponding to ·BB …v ˆ 17† show the same behaviour.

A. de Lange et al.264

Figure 4. Perturbation analysis of the g-u mixing near v ˆ 14 in both H ·HH 1§‡
…g† and

B 00 ·BB 1§‡
…u† states. A typical anticrossing pattern results in the lower panel. ¢E ˆ

(observed level energy) ¡ (energy of unperturbed ·HH level). At v ˆ 14 the largest mixing
between the gerade and ungerade states is to be expected and indeed, as can be seen in
the upper panel, the mixing is almost 50%±50%.

Figure 5. Observed spectra of B 00 ·BB 1§‡
…u† …v ˆ 17† and H ·HH 1§‡

…g† …v ˆ 17† levels in excitation
from the B 1§‡

u …v ˆ 21; J ˆ 2† intermediate state. The energy of the ·HH …v ˆ 17;
J ˆ 1; 3† levels is well above the barrier in H ·HH and it is bound by the u character
in the wavefunction.
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Most of the features of this g±u symmetry-breaking phenomenon can be
understood semiempirically and from a perturbation analysis only invoking

¢v ˆ 0 matrix elements in the coupling between ·HH and ·BB states. However, for the
interaction between ·HH and ·BB, accurate ab initio calculations were performed on the
relativistic potentials of both electronic states and on the non-adiabatic matrix
elements originating from equation (11). In these calculations the e� ects of all
interacting vibrational levels are included, i.e. also ¢v 6ˆ 0. From a detailed
comparison between experimentally determined level energies above the
X 1§‡

g …v ˆ 0; J ˆ 0† ground state and calculation, agreement to within 1.5 cm¡1

is found [13]. Only at excitation energies where tunnelling through the potential
barrier becomes a dominant e� ect do the discrepancies grow. This is due to the
neglect in the calculations of the interaction with Rydberg states at short internuclear
separation.

3. Asymptotic behaviour of electronic states near the n ˆ 2 limit in HD
We will show that, in HD, states at the dissociation threshold cannot, not even as

an approximation, be described in the basis of g/u states. This means that BO
potentials and actually all adiabatic potentials, cannot be used to describe the states
at threshold. Moreover, it will be shown that, in heteronuclear isotopomers, the only
possible long-range R dependence is R¡6. This in contrast to the homonuclear
counterparts, where an R¡3 asymptotic behaviour is found for the potential energy
in some electronic states. This phenomenon of change of asymptotic behaviour is
connected to the di� erence in mass of the nuclei. To account for the breakdown of
the g±u symmetry, we ®rst consider the possible potential energy curves representing
the electronic states that correlate with one atom in n ˆ 1 and one in n ˆ 2. A priori
it should be realized that, in view of the atomic isotope shift, there is not a single
n ˆ 2 dissociation limit. In HD there are two groups of limits, H(2`) ‡ D(1s) and
H(1s) ‡ D(2`), the latter 22.38 cm¡1 higher in energy than the ®rst and the adiabatic
representation will therefore break down at threshold. In fact spin±orbit and
hyper®ne interactions give rise to further splittings, which will not be treated here
since these e� ects are small (<0.2 cm¡1) in HD.

The starting point is to express all the states converging to the n ˆ 2 limit in terms
of a sum over products of the one-electron wavefunctions of the atomic states. At the
n ˆ 2 limit one atom is in the 1s ground state and the other atom in either a 2s or a
2p state. The latter can be subdivided in a s or a p orientation, with respect to the
internuclear axis. In total there are two electrons, two nuclei and three di� erent
states, which adds up to 12 di� erent permutations:

F ˆ c111 ¿H1s
…1†¿D2ss

…2† ‡ c121 ¿H1s
…2†¿D2ss

…1†

‡ c211 ¿D1s
…1†¿H2ss

…2† ‡ c221 ¿D1s
…2†¿H2ss

…1†

‡ c112 ¿H1s
…1†¿D2ps …2† ‡ c122 ¿H1s

…2†¿D2ps…1†

‡ c212 ¿D1s
…1†¿H2ps …2† ‡ c222 ¿D1s

…2†¿H2ps…1†

‡ c113 ¿H1s
…1†¿D2pp…2† ‡ c123 ¿H1s

…2†¿D2pp …1†

‡ c213 ¿D1s
…1†¿H2pp…2† ‡ c223 ¿D1s

…2†¿H2pp …1†: …13†

Phenomena of g±u symmetry breakdown in HD 265
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The numerals in parentheses indicate which electron is attached to the nucleus
indicated by the subscript. The atomic state is given in the subscript of ¿. The
coe� cient cijk carries three indices, i to indicate which atom is in the ground state
(1=H and 2=D), j being the electron attached to the ground state atom and k
representing the state of the excited atom (1 ˆ 2ss, 2 ˆ 2ps and 3 ˆ 2pp). In
equation (13) only the spatial part of the electronic wavefunction is considered.

The coe� cients cijk are interconnected via symmetry properties. Under exchange
of the electrons, the total wavefunction must be anti-symmetric. In the case of singlet
states, the spin wavefunction is antisymmetric under the exchange of both electrons
and the spatial part has to be symmetric. This means that c11x ˆ c12x and c21x ˆ c22x

for singlet states and similarly for triplet states c11x ˆ ¡c12x and c21x ˆ ¡c22x, in
which x is 1, 2 or 3 (we neglect spin±orbit interaction). When the electronic part of
the wavefunction is inverted with respect to the geometrical centre of the molecule,
the excitation actually swaps from one atom to the other. The gerade states are by
de®nition invariant under this operation and c11x ˆ c21x and c12x ˆ c22x. In the case
of ungerade states the relations are c11x ˆ ¡c21x and c12x ˆ ¡c22x. This results in the
following scheme:

c11x ˆ c12x ˆ c21x ˆ c22x
1¤g

c11x ˆ c12x ˆ ¡c21x ˆ ¡c22x
1¤u

c11x ˆ ¡c12x ˆ c21x ˆ ¡c22x
3¤g

c11x ˆ ¡c12x ˆ ¡c21x ˆ c22x
3¤u: …14†

Twelve di� erent potentials converge to the n ˆ 2 dissociation limit. These can be
subdivided in three groups of four potentials, each correlating with one of the three
1s + 2`¶ limits. Four electronic states (1§‡

g , 1§‡
u , 3§‡

g and 3§‡
u ) correlate with 1s +

2ss. Another four § states (again 1§‡
g , 1§‡

u , 3§‡
g and 3§‡

u ) correlate with 1s ‡ 2ps.
Finally, four ¦ states (1¦g, 1¦u,

3¦g and 3¦u), correlate with 1s ‡ 2pp. For every
potential only the four coe� cients described by equations (14) with the proper value
for x are non-zero; all the other coe� cients are equal to zero. This yields spatial
wavefunctions for the electronic states, for which we give two examples:

…1s2s†1§‡
g : ¿H1s

…1†¿D2ss
…2† ‡ ¿H1s

…2†¿D2ss
…1†

‡ ¿D1s
…1†¿H2ss

…2† ‡ ¿D1s
…2†¿H2ss

…1†;

…1s2p†3¦u : ¿H1s
…1†¿D2pp …2† ¡ ¿H1s

…2†¿D2pp …1†

¡ ¿D1s
…1†¿H2pp …2† ‡ ¿D1s

…2†¿H2pp …1†: …15†

These spatial wavefunctions must be multiplied by the appropriate spin wavefunc-
tions to obtain the total electronic wavefunctions. This approach of constructing
wavefunctions is only valid in homonuclear molecules, since we have imposed g or u
symmetry.

Because of the isotope shift in atomic H and D the level energy for H(n`) di� ers
from D(n`). This means that at a dissociation limit either one or the other atom is
excited. Therefore, there is an alternative restriction in HD; if the two atoms are
largely separated from each other, the excitation becomes localized, that is the
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excitation is at either one of the atoms. If the H atom is excited (indicated by H¤)
then c11x ˆ c12x ˆ 0 and if the D atom is excited (indicated by D¤) then c21x ˆ
c22x ˆ 0 and equations (14) become

c11x ˆ c12x ˆ 0; c21x ˆ c22x
1¤ …H¤†

c11x ˆ c12x; c21x ˆ c22x ˆ 0 1¤ …D¤†

c11x ˆ c12x ˆ 0; c21x ˆ ¡c22x
3¤ …H¤†

c11x ˆ ¡c12x; c21x ˆ c22x ˆ 0 3¤ …D¤†: …16†

These relations can be ful®lled only if each g±u couple of the same multiplet,
converging to one of the limits, is completely mixed. The spatial wavefunctions at
long range can be evaluated on substitution of the restraints on the coe� cients as
given in equation (16), yielding

D…2s†1§‡ : ¿D1s
…1†¿H2ss …2† ‡ ¿D1s

…2†¿H2ss…1†

H…2s†1§‡ : ¿H1s
…1†¿D2ss …2† ‡ ¿H1s

…2†¿D2ss…1†

D…2p†1§‡ : ¿D1s
…1†¿H2ps …2† ‡ ¿D1s

…2†¿H2ps …1†

H…2p†1§‡ : ¿H1s
…1†¿D2ps …2† ‡ ¿H1s

…2†¿D2ps …1†

D…2p†1¦ : ¿D1s
…1†¿H2pp …2† ‡ ¿D1s

…2†¿H2pp …1†

H…2p†1¦ : ¿H1s
…1†¿D2pp …2† ‡ ¿H1s

…2†¿D2pp …1†

D…2s†3§‡ : ¡¿D1s
…1†¿H2ss

…2† ‡ ¿D1s
…2†¿H2ss

…1†

H…2s†3§‡ : ¡¿H1s
…1†¿D2ss

…2† ‡ ¿H1s
…2†¿D2ss

…1†

D…2p†3§‡ : ¡¿D1s
…1†¿H2ps …2† ‡ ¿D1s

…2†¿H2ps …1†

H…2p†3§‡ : ¡¿H1s
…1†¿D2ps …2† ‡ ¿H1s

…2†¿D2ps …1†

D…2p†3¦ : ¡¿D1s
…1†¿H2pp …2† ‡ ¿D1s

…2†¿H2pp …1†

H…2p†3¦ : ¡¿H1s
…1†¿D2pp …2† ‡ ¿H1s

…2†¿D2pp …1†: …17†

Thus, in the case of a heteronuclear molecule the g/u labels lose their meaning at the
dissociation limit and the relations given in equations (14) are invalid.

The spin±orbit interaction is neglected and the spin is therefore a good quantum
number. As a result the singlet potential curves and the triplet curves may be
evaluated independently. Further, because of the cylindrical symmetry, ¤ is also a
good quantum number and the states of § and ¦ symmetry can also be treated
separately. So, the four ¦ states can be evaluated in pairs and it has been shown that
this gives good results [8]. To construct § potential curves in which the breakdown of
the inversion symmetry is incorporated, the curves are also evaluated in pairs. This is
not strictly valid; within each multiplet, four § potentials converge to the n ˆ 2 limits
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(see Table 17), two correlating with 2ss and two with 2ps. There are, however, some
limitations in the way the four potentials may couple.

First, Hgu couples only states of di� erent inversion symmetry. This can be seen as
follows. Hgu is odd under inversion of the electronic coordinates:

iHgu ˆ ¡Hgu; …18†

with i the inversion operator. Further,

h¿mjHguj¿ni ˆ 0; …19†

if the integrand is an odd function and hence ¿mHgu¿n must be an even function:

i…¿mHgu¿n† ˆ …i¿m†…iHgu†…i¿n†

ˆ ¡…i¿m†Hgu…i¿n†

ˆ ‡…¿mHgu¿n†; …20†

which can only be satis®ed if either ¿m is even and ¿n is odd or the other way around.
Hence, two interacting states under the Hgu operator must be of di� erent inversion
symmetries. Thus, one potential couples at most with the two potentials of the other
symmetry. If a 2s¼u…g† state couples solely with a 2p¼g…u† state, it can be shown that
this would result in an unphysical long-range behaviour. Therefore, it is assumed
that the interactions between 2ssg and 2ssu and between 2psg and 2psu are stronger
than the interactions between states with di� erent `. In conclusion, as a ®rst-order
approximation, the § states will also be evaluated pairwise. Of course, very close to
threshold, within the range of spin±orbit interaction, more states have to be
evaluated at once. It is noted here that similar considerations will apply to the case
of ®ne and hyper®ne interactions as well.

Now we proceed with the construction of new potential energy curves, taking
into account g±u symmetry breaking, for which the following eigenvalue problem
has to be solved:

Vg…R† H

H Vu…R†

" #

C…R† ˆ E…R†C…R†: …21†

The two potentials Vg and Vu are the gerade and ungerade adiabatic potential curves
of the same multiplicity converging to the same limit. H represents the interaction
between the two states and is in principle a function of the internuclear distance R.
As a ®rst-order approximation, the value at R ˆ 1 can be used and equals half
the energy-di � erence of the levels H(2`) + D(1s) and H(1s) + D(2`). This value
(11.19 cm¡1) is determined using the value of the hydrogen±deuterium isotope shift
of the 1S±2S transition as given in [14] with neglect of the ®ne structure; this splitting
is the same for both isotopes up to an accuracy of 0.001 cm¡1. After diagonalization
of the matrix of equation (21) two potentials are found, of which one converges to
the H+D¤ limit and one to H¤ ‡ D:

V§ ˆ Vg ‡ Vu

2
§

��������������������������������������
Vg ¡ Vu

2

³ ´2

‡ H2

s

; …22†

where the ‡ …¡† sign refers to the upper (lower) dissociation threshold. The long-
range interaction between two H atoms is governed by an attractive R¡6 term in the
case of the § states correlating with 1s + 2s. The states correlating with 1s + 2p are
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dominated by an R¡3 term. When the terms up to R¡6 of the long-range potentials
are substituted in equation (22), the following equations are obtained:

V§ ˆ
Cg

6 ‡ Cu
6

2R6
§

������������������������������������
Cg

6 ¡ Cu
6

2R6

³ ´2

‡H2

s

; …23†

for the potentials correlating with 1s+2s and

V§ ˆ Cg
3 ‡ Cu

3

2R3
‡ Cg

6 ‡ Cu
6

2R6

§

�����������������������������������������������������������
Cg

3 ¡ Cu
3

2R3
‡

Cg
6 ¡ Cu

6

2R6

³ ´2

‡H2

s

; …24†

for the potentials correlating with 1s + 2p, where Cg
n and Cu

n are the coe� cients of
the nth term of the multipole expansion for the gerade and ungerade states respec-
tively. For the latter case, Cg

3 ˆ ¡Cu
3 and Cg

6 ˆ Cu
6 [15] and hence equation (24) can

be rewritten

V§ ˆ
Cg

6

R6
§

���������������������������
Cg

3

R3

³ ´2

‡ H2

s

: …25†

Using
�����������
1 ‡ x

p
º 1 ‡ x=2 for x ½ 1, equations (23) and (25) can be approximated by

the following equations in the case of large internuclear separations, taking only the
terms up to R¡6 into account:

V§ ˆ
Cg

6 ‡ Cu
6

2R6
§ H 1 ‡

Cg
6 ¡ Cu

6

¡ ¢2

8H2R12

" #

º
Cg

6 ‡ Cu
6

2R6
§ H …26†

for the states correlating with 1s+2s and

V§ ˆ
Cg

6

R6
§ H 1 ‡

Cg
3

¡ ¢2

2H2R6

" #

ˆ
Cg

6 § …Cg
3†2=2H

R6
§ H; …27†

for the states correlating with 1s+2p.
Hence it follows that, in the case of HD, all potentials have a long-range

dependence on R¡6, in contrast with H2 where the potentials correlating with the
1s+2p limit have an asymptotic behaviour of R¡3. This can be physically under-
stood in terms of identical particles.

In H2 the nuclei are identical and no distinction can be made as to which atom is
excited, giving rise to a two-fold degeneracy. A wavefunction may therefore be
written as the superposition of atom A in the ground state and atom B in the excited
state and vice versa:

jCi ˆ ¬jAijB¤i ‡  jA¤ijBi: …28†

This superposition may in turn be expressed in terms of states where the individual
atoms are in a superposition of the ground state and the excited state:
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¬jAijB¤i ‡  jA¤ijBi ˆ
X2

iˆ1

…aijAi ‡ bijA¤i†…cijBi ‡ dijB¤i†: …29†

The coe� cients should be chosen such that terms containing jAijBi or jA¤ijB¤i
vanish. Atoms in such a superposition possess permanent dipoles and the interaction
between two permanent dipole moments is proportional to R¡3. This phenomenon is
called resonant dipole±dipole interaction [16].

In HD, however, the two atoms are not identical and there is no two-fold
degeneracy; either one or the other atom is excited. The two atoms are therefore in
distinctive states and no superposition can be formed that would result in a dipole.
The interaction is in this case dipole-induced dipole and is therefore proportional to
R¡6.

Finally, we note that in the present section potentials are derived that give a
better discription of the HD molecule than the BO potentials and the potentials of
the usual adiabatic approximations . Indeed, mixing between di� erent BO-potentials,
the ones of opposite g/u symmetry, is invoked and this is by de®nition, as given at the
end of section 1.1, a non-adiabati c coupling.

3.1. Assignment of the potential curves
The long-range interactions between hydrogen atoms have been calculated by

Stephens and Dalgarno [15], yielding the constants Cg
n and Cu

n that were used as
variables in the analysis above. The constants provided by Stephens and Dalgarno
are published in atomic units and the potential energy is given by

V…R†…au† ˆ
X1

nˆ1

Cn…au†
Rn…au† : …30†

For a hydrogen atom with in®nite nuclear mass, the atomic units are hartrees for
energy (Eh ˆ 219474:63 cm¡1) and the Bohr radius for length (a0 ˆ 0:529 177 208 AÊ )
and the units of Cn are thus ‰CnŠ ˆ au ˆ Eh an

0. If the ®nite masses of the nuclei are
considered, an appropriate scaling of the atomic units has to be incorporated. The
energy scales with the reduced mass, while the length is proportional to the
reciprocal of the reduced mass. The conversion from atomic units to units of
wavenumbers and Bohr radii of Cn is thus

Cn‰cm¡1an
0Š ˆ Cn…au†Eh

·

me

³ ´
me

·

³ ´n

ˆ Cn…au†Eh
me

·

³ ´n¡1

: …31†

The Cn describe the potential shape of two interacting atoms, but the conversion is
given in terms of the reduced mass of only one atom. This gives rise to a problem in
the case of heteronuclear isotopomers with two atoms of di� erent reduced mass. In
the case of HD we used the reduced mass of a non-existing atom, such that two of
these atoms would form a molecule with the same reduced mass of the nuclei as in
HD. Thus,

1

·HD

ˆ 1

me

‡ 1

2

1

MH

‡ 1

MD

³ ´
; …32†
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with me the mass of an electron and MH and MD the masses of the nucleus of H and

D respectively.
By incorporating these values for Cn (see [8] for the values) and following the

procedure as outlined above in section 3, six potentials are found, all doubly
degenerate. Twelve electronic states correlate with the n ˆ 2 limit of which six are

triplet states. In view of the very small spin±orbit interaction in hydrogen the
potential energy curves for the triplet states at long range coincide with those of

the singlets. Only at binding energies well below 1 cm¡1 will the di� erence become
signi®cant. In ®gure 6 the six resulting potentials are plotted and it can be seen how

the newly constructed potentials converge to one of the actual limits in HD, rather
than the adiabatic limit.

The adiabatic approximation is valid to a high degree in the case of the homo-
nuclear isotopomers. Therefore, with the aid of spectroscopic data the adiabatic

curves could be assigned. At long range the singlet potential with the highest
energy belongs to the GK 1§‡

g state. The other ®ve singlet states are in order of

high to low energy, C 1¦u, B 0 1§‡
u , EF 1§‡

g , II 0 1¦g and B 1§‡
u . To account for the g±

u symmetry breaking, the potentials are evaluated pairwise and this resulted in new

potential curves where the upper one was shifted upwards and the lower one

downwards with respect to the adiabatic curves. The newly constructed potential
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Figure 6. The long-range adiabatic (broken curves) and the constructed potential (full
curves) curves are depicted. Both sets of curves are based on the Cn values as
calculated by Stephens and Dalgarno [15], although adapted to the case of HD. In
homonuclear isotopomers, the adiabatic framework is accurate up to a very high
level. In heteronuclear isotopomers, however, this representation breaks down and
these potential curves cannot be used at large internuclear distances. As can be seen,
the adiabatic curves are still valid for the small internuclear distances. At larger
internuclear distances the constructed potentials start to deviate from the adiabatic
ones and converge always with R¡6 to one of the limits. It must be noted that in
these curves the long-range interaction terms up to R¡8 are taken into account. In the
absence of spin±orbit interaction, the triplet states have at long range exactly the
same R dependence and, hence the same curves apply to the triplet states
(with appropriate interchange of g and u labels). The curves of the GK 1§‡

g , C 1¦u,
B 0 1§‡

u , EF 1§‡
g , II 0 1¦g and the B 1§‡

u states resemble the curves of the f3§‡
u , i3¦g,

h3§‡
g , e3§‡

u , c3¦u and a3§‡
g states respectively.
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curves converge from the adiabatic curves to the dissociation limits, without crossing
each other, as can be seen in ®gure 6. Therefore, the assignment of these curves
follows the same order as in the adiabatic case. The g/u labels, which lose meaning in
the asymptotic limit, have been retained in the ®gure to indicate how the long-range
potentials connect to the known potentials at shorter range, where g=u is approxi-
mately a good quantum number. In the case of the triplet states, a similar reasoning
results in the assignment of the curves. These assignments are given in the ®gure
caption of ®gure 6.

The pairwise g±u interaction is between GK 1§‡
g and B 1§‡

u for (1s+2ps) and
between C 1¦u and II 0 1¦g for (1s+2pp). The interaction results in an asymptotic
behaviour proportional to R¡6, unlike the proportionality of R¡3 in the homo-
nuclear isotopomers. The B 0 1§‡

u and EF 1§‡
g states correlate with 1s+2ss and

converge asymptotically as R¡6, even in the homonuclear species. In HD the
pairwise g±u interaction causes the GK , C and B0 states to approach the upper limit
H+D¤, whereas EF, II 0 and B converge to the lower H¤+D limit.

3.2. Observation of energy levels near the n ˆ 2 threshold in HD
Around the n ˆ 2 limit several levels have been observed in HD. Dabrowski and

Herzberg have observed rovibrational levels very close to the dissociation limits for
all singlet ungerade states [5]. For the B state band origins were determined up to
v ˆ 43, so very close to dissociation threshold, whereas vibrational levels up to
v ˆ 15 were observed for the C state. As for the B0 state levels were observed for
v ˆ 0±10. The v ˆ 10 levels with J ¶ 2 are above the lower (H¤+D) limit; the J ˆ 4
level is even above second (H+D¤) limit. A tentative assignment is given for
B0 (v ˆ 11; J ˆ 1) at 118 683.6 cm¡1.

Two groups focused on laser excitation near the n ˆ 2 threshold with transitions
originating from g symmetry levels. While the Stoiche� group used single-photon
excitation from the X 1§‡

g ground state, the Eyler group used excitation from
EF 1§‡

g intermediate levels. The dissociation energy in HD was determined by
Balakrishnan et al. [17] as 36 405.83(10) cm¡1. This value was later con®rmed
(36 405.88(10) cm¡1) by Eyler and Melikechi [18] in work with somewhat higher
resolution. In further studies by the Eyler group it was established that at the higher
(H+D¤) limit a peculiar resonance occurs, giving rise to a Beutler interference
minimum near threshold, when the H(2s) signal is probed [19]. This prevented an
accurate determination of the (H+D¤) upper limit in HD.

For the gerade states, levels were positively assigned up to v ˆ 23 for the EF
state, v ˆ 3 for the GK state and v ˆ 3 for the I state in [5]. All these levels are well
below the n ˆ 2 dissociation limits, although a number of higher-lying unidenti®ed
resonances were reported [5]. Many of those resonances were assigned as EF levels in
the range from v ˆ 24 to v ˆ 34, based on ab initio calculations, in the work of
Quadrelli et al. [20]. In the work of de Lange et al. [8], a rotational progression was
tentatively assigned to the EF ; v ˆ 37 state (see ®gure 7).

3.3. Analysis of levels in the I 0 1Pg state near threshold
In particular for the I 0 1¦g state a detailed experimental analysis was performed

for the energy levels in HD [8], as well as in H2 and D2 [21]. In the case of H2 and D2

the observed level energies agree very well with the energies from ab initio
calculations by Dressler and Wolniewicz [22]. These calculations were done in the
adiabatic representation, i.e. not considering the coupling between the vibrational
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motion of the nuclei and the motion of the electrons as is described by equation (11).
In the case of H2 and D2, this term vanishes and the adiabatic picture is a very good
approximation, in the absence of vibrational coupling in the same manifold.
However, in the case of HD, this term is of considerable value; at the dissociation
limit the interaction is º20 cm¡1, which is even a large fraction of the potential depth
of the I 0 well (º200 cm¡1).

LeRoy and Bernstein [23] and Stwalley [24] have shown that the binding energies

°v of the upper vibrational levels v in a potential well with asymptotic behaviour
Cn=Rn are determined by the following formula:

vD ¡ v º an°…n¡2†=2n
v ; …33†

with an a constant proportional to Cn and vD the `e� ective’ vibrational quantum
number at the dissociation limit. This formula, when applied to the adiabatic I 0

potential as calculated by Dressler and Wolniewicz [22], reproduces the experimental
data in the cases of H2 and D2, even for the lowest vibrational levels. Beyond the
observed levels, more levels, closer to the dissociation limit, were predicted; in total
the I 0 outer well should sustain seven and 11 vibrational levels for respectively H2

and D2. Applying equation (33) to the same adiabatic potential for HD results in
nine vibrational levels. This adiabatic potential converges towards the non-existing
adiabatic dissociation limit, i.e. halfway between the two actual limits: H¤ + D and
H+D¤. The energy levels v ¶ 3 lie all above the lower H¤+D dissociation limit. In
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Figure 7. Overview XUV+IR spectrum of HD with the XUV laser tuned on the B 1§‡
u ±

X 1§‡
g …18; 0† R…0† transition. The traces show respectively the H‡ and D‡ ion signals

obtained after the ionization pulse. The lines are saturation broadened. The
continuum onset in the upper trace corresponds to the H¤+D dissociation limit,
whereas the onset in the second trace corresponds to the H+D¤ dissociation limit.
The feature superimposed on the continuum signal in the upper trace is due to an
unassigned predissociating state. The line marked with an asterisk is unidenti®ed as
well.
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the calculations by Dressler and Wolniewicz [22], one level was even predicted above
this limit. Moreover, the asymptotic behaviour follows an R¡6 dependence in HD in
contrast to the R¡3 dependence in the homonuclear isotopomers, as explained
above.

Applying equation (33) to the constructed potential has to be done with caution;
the potential changes from an R¡3 to an R¡6 dependence and the potential is well
beyond the transition regime and follows almost exactly an R¡6 function only for
v ¶ 2. This has the result that only one data point (v ˆ 2) can be used in the analysis.
If, nevertheless, equation (33) is applied to the constructed potential, with n ˆ 6 and
the appropriate value for an, one more level is predicted.

Instead of using the approximate LeRoy±Bernstein±Stwalley long-range model,
the energy levels can also be calculated directly from the SchroÈ dinger equation.
Using the adiabatic potential of Dressler and Wolniewicz [22] for internuclear
distances R < 12 au and the constructed potential, obtained by diagonalizing the
matrix in equation (21), for R > 12 au, the energy levels of the I 0 state are calculated
with the computer program LEVEL 6.1 of LeRoy [25]. Some slight adaptions to the
potentials had to be made to interconnect the two potential curves at R ˆ 12 au, as
described in [8]. The level energies calculated by Dressler and Wolniewicz [22] deviate
º1 cm¡1 from the observed energies, whereas the energies based on the constructed
potential di� er by only tenths of a wavenumber [8]. This validates the procedure to
account for the gerade±ungerade symmetry breaking, as described at the beginning of
this section. Beyond the observed vibrational levels, indeed one more vibrational
level …v ˆ 3† is predicted with a binding energy of 1.38 cm¡1 (for J ˆ 1).

Another phenomenon of g±u symmetry breaking is directly visible in the
excitation spectrum of the I 0 state as presented in ®gure 7. The spectrum shows
excitation to the I 0 state after preparing the B 1§‡

u …v ˆ 18; J ˆ 1; mJ ˆ 0† inter-
mediate state. Two di� erent signals were recorded simultaneously: H‡ and D‡ ions
that were produced after subsequent excitation of the population in the I 0 state to
above the dissociation limit of the HD‡ ion; this is accomplished by a UV laser
photon. Near dissociation threshold an asymmetry in the H‡/D‡ signal ratio
appears because the 2p excitation becomes localized on the H side of the molecule.
This localization is an indicator of the breakdown of inversion symmetry in HD.
Although the e� ciencies for H‡ and D‡ detection are not equal and noise plays a
role, the gradual trend towards stronger H‡ signals with increasing v is obvious from
®gure 7. The levels closer to the limit, in the range where v ˆ 3 is expected, are not
seen at all in the D‡ spectrum. In ®gure 7 only R…1† lines are allowed to the I 0 state;
P…1† probes a J ˆ 0 level and these are not supported by a ¦ state and Q transitions
with mJ ˆ 0 ! 0 are dipole forbidden with linearly polarized light, as can easily be
seen from the 3j symbol

J 1 J

0 0 0

Á !
ˆ 0: …34†

4. Conclusion
An overview is given of several features in the HD molecule connected to the

breakdown of the gerade±ungerade inversion symmetry. Transitions which are
forbidden in homonuclear isotopomers but to some degree allowed in the hetero-
nuclear counterparts were already known. Recently an example of a much stronger
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accidental mixing of g±u states was found, ranging over a large span of vibrational
levels. Furthermore, we have mapped out how adiabatic long-range potentials can be
used to construct a di� erent set of potentials, incorporating g±u symmetry break-
down near the dissociation limits.
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